1 EURAXESS country in focus: Malta................................. 2
  1.1 Introduction.................................................................. 2
  1.2 Maltese policy, strategy and funding opportunities.............. 3
  1.3 Malta’s research landscape........................................ 3
  1.4 EURAXESS in Malta – ready to support you!.................... 4
2 Hot topic: Status update of gender equality in research careers in Europe........................................ 5
  2.1 Global overview.......................................................... 5
  2.2 The ‘leaky pipeline’ and its evolution over time.................. 6
  2.3 Very slow improvement in STEM fields.......................... 8
  2.4 Gender gap in international mobility of researchers........... 9
  2.5 Gender pay gap in research careers.............................. 10
  2.6 Gender equality policies and gender distribution in Marie Skłodowska-Curie Actions................................. 11
  2.7 Gender equality policies and gender distribution in European Research Council grants................................. 13
3 In focus: Interview with Charuta Kulkarni, MSCA-Individual Fellow, The Open University, UK .............. 16
4 In case you missed it.................................................. 19
  4.1 From our Flashnotes (January-March)............................ 19
1 EURAXESS country in focus: Malta

1.1 Introduction
The Republic of Malta is an island country situated right in the heart of the Mediterranean Sea, yet close to the European mainland. With its rich history, dating back to 5,000 BCE, Malta is often referred to as an open-air museum. Along with its history and heritage, Malta offers 300 days of sunshine, sea-sculpted shores, azure waters and delicious Mediterranean cuisine. The island’s lifestyle is modern and welcoming, providing a good base for families. Malta has excellent local and international public and private education, with all schools teaching in English. English is one of the two official languages, along with Maltese.

Malta is considered as one of the safest countries in the world, especially when it comes to natural disasters and crime, according to the 2019 edition of the World Risk Report.

In recent years, Malta has experienced above average economic growth and has been ranked as one of the fastest-growing economies in the eurozone.

With efficient support features in place, the island is also an attractive place for business. The government understands that a healthy private sector and an overall pro-investment climate contributes to the country’s sustainable development.

Moreover, Malta is on its way to becoming a leading innovation island. It has made important strides in key technological areas by establishing the first regulatory framework for block chain, cryptocurrency and distributed ledger technology.

Country size: 316 sq. km
Population: 457,267
Languages: Maltese (official) 90.1%, English (official) 6%, multilingual 3%, other 0.9%
Capital: Valletta
Median Age: 42.3 years
Currency: Maltese Lira
Economy:
GDP per capita: $41,900
Unemployment rate: 4.6%
All based on: https://www.cia.gov/library/publications/the-worldfactbook/geos/mt.html
EURAXESS Malta has produced a video that gives a brief overview of the Maltese science, technology and innovation landscape. Watch the video here.

1.2 Maltese policy, strategy and funding opportunities

The Malta Council for Science and Technology (MCST) is the governmental body responsible for research and innovation (R&I), space, science and technology in Malta. MCST is responsible for the National R&I Strategy, the National Action Plan and the National Space Policy.

Being the official contact point for the EU Framework Programme for Research and Innovation (Horizon 2020) and the PRIMA initiative, MCST is also the managing body of the national funds for research, namely the FUSION programme and the Space Research Fund. The MCST has a team of National Contact Points ready to assist you in finding relevant partners, applying for funding or resolving your project-related queries. It regularly publishes calls for proposals under various funding mechanisms, some of which are highlighted below:

**FUSION**, a National Funding Programme, is supported through government funding and managed by the Malta Council for Science and Technology. The main objectives of FUSION are: to raise the level and profile of locally funded research; to ingrain research and innovation at the heart of the Maltese economy; to spur knowledge-driven and value-added growth; and to sustain improvements in the quality of life.

**IPAS+** provides researchers with two options:

- Option A aims to foster mutually beneficial international relationships between local R&I-performing academic or private entities and foreign counterparts.

- Option B provides opportunities for Maltese entities intending to submit a Horizon 2020 (H2020) proposal as the coordinator of a consortium to engage a service provider (local or foreign) who will be supporting the applicant through proposal writing and submission.

The **Space Research Fund** provides financial support for research, development and innovation in the downstream satellite Earth Observation (EO) sector, specifically projects that deal with the processing and exploitation of data collected through EO satellites.

1.3 Malta’s research landscape

The **University of Malta** (UM) is the highest teaching and research institution in Malta and was founded in 1769. It is a publicly funded institution and caters for 11,000 students which include over 1,000 international students from 92 different countries and comprises over 1,000 academics, and
approximately 800 technical and administrative staff. The UM is made up of 14 faculties and a number of interdisciplinary institutes, centres and schools. The UM is actively participating in MSCA projects and proposals.

The Malta College of Arts, Science and Technology (MCAST) is a vocational education and training institution. Established in 2001, MCAST offers 180 full-time and over 300 part-time vocational courses ranging from certificates to Master’s degrees.

Malta Enterprise is the country’s economic development agency, tasked with attracting new foreign direct investment as well as facilitating the growth of existing operations. The agency has developed various R&I incentives for the promotion and expansion of industry and the development of innovative enterprises.

The Malta Life Sciences Park (MLSP) provides an international class facility for life sciences and information technology development. The MLSP is designed to promote research and development, and to spur the growth of the life sciences sector in Malta, building on the base that the country developed in the pharmaceutical industry during the last decade.

Based at the University of Malta, TAKEOFF is Malta’s first technology business incubator. The programme is specifically designed to help innovators and aspiring entrepreneurs create successful science, technology, engineering, creative media and knowledge-based start-up business – taking them from idea to investment and, well, to take off.

Malta is also the home of a number of private companies with a core research and development base in various sectors. Upcoming developments include:

- Construction of new centre of excellence for aircraft maintenance which will include ground breaking facilities.
- A state-of-the-art laboratory dedicated to medical cannabis research is being set up in Malta as a result of a memorandum of understanding between Malta Enterprise and the La Sapienza University of Rome.

EURAXESS – Researchers in Motion is an initiative of the European Research Area (ERA) that addresses barriers to the mobility of researchers and seeks to enhance their career development. This pan-European effort is currently supported by over 40 countries.

1.4 EURAXESS in Malta – ready to support you!

EURAXESS Malta is hosted by the Malta Council for Science and Technology and is ready to assist you if you choose Malta as your host country or you would like to cooperate with Maltese researchers!

PlumTri acts as a platform that facilitates networking and knowledge-sharing amongst stakeholders in the Mediterranean involved in the spheres of research and innovation, and serves as a one-stop-shop for information on relevant funding opportunities and events in the EuroMed region.

![Marsaxlokk (Source: Shutterstock)](image)
2 Hot topic: Status update of gender equality in research careers in Europe

The ‘She Figures’ publication provides a range of indicators on gender equality in research and innovation at pan-European level. It aims to give an overview of the gender equality situation, using a wide range of indicators to examine the impact and effectiveness of policies implemented in this area. At the occasion of the publication of the latest edition in March 2019, we investigate the evolution of the situation of gender equality in Europe and in EU programmes for researcher mobility (i.e. European Research Council, ERC and Marie Skłodowska-Curie Actions, MSCA). Large parts of this article are directly sourced from the final ‘She Figures 2018’ report and a version of this story has also appeared in the

2.1 Global overview

The EU is approaching gender balance among doctoral students. Overall, in 2016, women made up 47.9% of doctoral graduates at the EU level, in two thirds of EU Member States the proportion of women among doctoral graduates ranged between 45% and 55%. While the overall number of both women and men doctoral graduates increased between 2007 and 2016, in most of the countries that ‘She Figures’ covered, the number of women doctoral graduates increased at a faster rate than that for men. The proportion of women among doctoral graduates still varies according to different fields of education; in 2016, women doctoral graduates at EU level were over-represented in education (68%), but under-represented in the field of information and communication technologies (21%) as well as the fields of engineering and manufacturing and construction (29%).

Differences between women and men can also be observed in their working conditions as researchers. At the EU level, the proportion of women researchers working part-time was higher than that of men; 13% of women researchers and 8% of men researchers were working part-time in 2016. Furthermore, 8.1% of women and 5.2% of men researchers worked under contract arrangements considered as ‘precarious employment’. In terms of equal payment, there is still a considerable gender pay gap in scientific R&D occupations. Across the EU-28, women in R&D earned on average 17% less than their male colleagues in 2014, and the gender pay gap was found to widen with age. Moreover, the presence of women researchers seems to have an inverse relationship with the R&D expenditure per researcher; most of the countries that spent more per researcher had some of the lowest shares of women researchers.

In the EU-28, women were still under-represented in the writing of scientific papers. Between 2013 and 2017, the ratio of women to men among authors...
of scientific publications in the EU was on average one to two. However, this ratio is slowly improving, and it has been increasing by almost 4% per year since 2008. The highest women to men ratio of authorship was observed in the fields of medical and agricultural sciences, where a little over 8 women authors corresponded to 10 men authors. Moreover, women are still strongly under-represented among patent inventors; between 2013 and 2017 in the EU, the women to men ratio of patent inventors was on average just over 1 to 3. A strong gender gap in the composition of the inventors’ teams was also observed in the EU-28, where the most frequent composition of the teams was all men (47%), followed by those with just one male inventor (33%). A final overall observation for EU countries was a slight gender gap in receiving research grants. The funding success rate was higher for men team leaders than women team leaders by 3.0 percentage points.

2.2 The ‘leaky pipeline’ and its evolution over time

The fact that women tend to be less and less represented within researcher populations with age (or experience, career level) is often referred to as the ‘leaky pipeline’. Indeed, as shown in Figure 1, women are on average over-represented up to the tertiary education level, but start being under-represented at the higher education level: there are less women university graduates (all levels including PhD) than men; and the tendency worsens after the post-doctoral phase.

![Figure 1. Proportion (%) of men and women in a typical academic career, students and academic staff, EU-28, 1999-2016](source: She Figures 2018 and 2015)
Women in the EU were the majority of students and graduates at Bachelor’s and Master’s or equivalent levels in 2016. In fact, their share among graduates (58%) was higher than that among undergraduate students (54%), pointing to the better performance of women rather than men in their studies. Conversely, women start to be under-represented as of the doctoral stage (48%), and while the same proportion is observed among PhD degree holders, numbers plunge at the post-doctoral stage (46%), down to 40% at mid-career level and as low as 24% at senior level.

Research identifies institutional and field-related research cultures that favour the advancement of men. Some of the issues stopping women’s advancement to top decision-making roles include their lower success rates in securing prestigious grants and the preponderance of part-time and short-term contract research positions among women’s careers. In addition, implicit gender bias in performance assessment, gender stereotypes, gendered perceptions of leadership and leadership styles, the ‘glass ceiling’, and the ‘gender pay gap’ are among the factors that can influence the recruitment and promotion of women to senior grade positions, evaluation committees and university oversight bodies, and scientific committees responsible for research funding.

The proportion of women among senior staff at the national level ranges from 13% to 54.3%. The proportion is 40% or higher in just five countries. The largest proportions of women were observed in Romania (54.3%), Bosnia and Herzegovina (45.1%) and Latvia (41.4%), while the smallest proportions were in Cyprus (13%), Israel (14.3%) and the Czech Republic (14.6%). The share of women among all academic staff, irrespective of career level, in the EU, was 41.3%, while at national level it ranged from...
34.4% to 57.4%. The largest proportions of women were observed in Lithuania (57.4%), Latvia (55.8%) and Romania (54.6%), while the smallest ones were found in the Czech Republic (34.4%), Greece (35.1%) and France (36.5%).

Yet there is a notable positive evolution of the gender gap in research careers, as displayed in Figure 2. While the number of women university students in the EU-28 (pre-doctoral) has stagnated or only slightly evolved between 1999 and 2016 (with a peak in 2003), all career levels from PhD degree holders to senior level have seen an evolution of ten points on average over the same period.

This evolution represents an annual progression of 0.6 percentage points at the PhD degree holders’ level, 0.5 at the post-doctoral level, 0.6 at the mid-career level and 0.65 at the senior level. Assuming similar rates of change in years to come, the remaining gender gap would not be bridged until:

- Mid-2019 at the PhD degree holder level (2 percentage points progression needed to reach 50%)
- 2024 at the post-doctoral level (4 points needed)
- Mid-2032 at the mid-career level (10 points needed)
- 2056 at the senior level (26 points needed).

### 2.3 Very slow improvement in STEM fields

The share of women is considerably smaller in natural sciences, technology, engineering and mathematics (STEM) than overall fields of research across the career path. This affects all tertiary education levels and all the three higher career grades. More specifically, as shown in Figure 3, in the EU in 2016, women were 32% of students and 36% of graduates in STEM at the university graduate level. These proportions are 23 percentage points lower than the respective ones over all fields of education. At doctorate level, women were 37% of students and 39% of graduates in STEM, eleven and nine percentage points respectively below their corresponding shares over all fields.
The same picture of a wider gap between women and men emerges among academic staff, where women were 35% of post-doctoral staff, 28% of mid-career researchers and only 15% at senior level. The situation has nonetheless improved slightly since 2013, when the respective shares were 34%, 26% and 14%.

2.4 Gender gap in international mobility of researchers

Figure 4 explores the gender differences in the mobility of researchers at advanced stages in their careers (from post-doctoral to senior career levels). It presents the difference between the proportions of women and men researchers who reported that they have worked for at least three months in the last decade in a country other than the one where they attained their highest educational degree. A positive result indicates that men’s rate of mobility is higher, while a negative result shows that women’s rate is higher. The difference between the mobility of women researchers and men researchers in the EU in 2016 was 3.6 percentage points in favour of men (25.1% mobility for women and 28.7% for Figure 4. Sex differences in the international mobility of researchers, 2016 men). It is worth noting that this difference has decreased since 2012 when it was nine percentage points. The largest differences in mobility between women and men researchers in favour of men for 2016 were found in Ireland with 11.1 percentage points, Slovakia with 10.9 percentage points and Poland with 10.4 percentage points.
2.5 Gender pay gap in research careers

At the EU level, 13.0% of women researchers and 8.0% of men researchers in the higher education sector were working part-time in 2016. In most of the countries considered, the proportion of women researchers working part-time was higher than that of men. Women researchers in the higher education sector were also more likely than men to be employed under precarious working contracts with the respective shares in the EU being 8.1% and 5.2%. This pattern was found in two thirds of the countries examined. This partly contributed to the fact that women employed in scientific R&D activities earned on average 17% less than their male colleagues in 2014, but overall, the gender pay gap widens with age.

Table 1. Gender pay gap in % in the EU-28 and Associated Countries in 2014. Left panel: economic activity ‘Scientific R&D’, per age category; right panel: total economy, per age category. A positive value points to women being paid less than men, a negative one the reverse.

<table>
<thead>
<tr>
<th>Country</th>
<th>Scientific research and development (NACE rev.2, division 72)</th>
<th>Total economy</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>&lt;35</td>
<td>35–44</td>
</tr>
<tr>
<td>EU-28</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BE</td>
<td>8.0</td>
<td>9.4</td>
</tr>
<tr>
<td>BG</td>
<td>3.7</td>
<td>-12.2</td>
</tr>
<tr>
<td>CZ</td>
<td>18.3</td>
<td>40.7</td>
</tr>
<tr>
<td>DK</td>
<td>10.9</td>
<td>18.9</td>
</tr>
<tr>
<td>DE</td>
<td>9.3</td>
<td>18.8</td>
</tr>
<tr>
<td>EE</td>
<td>13.7</td>
<td>24.4</td>
</tr>
<tr>
<td>IE</td>
<td>7.0</td>
<td>40.5</td>
</tr>
<tr>
<td>EL</td>
<td>8.0</td>
<td>36.1</td>
</tr>
<tr>
<td>ES</td>
<td>9.6</td>
<td>14.8</td>
</tr>
<tr>
<td>FR</td>
<td>11.4</td>
<td>9.3</td>
</tr>
<tr>
<td>HR</td>
<td>1.8</td>
<td>31.8</td>
</tr>
<tr>
<td>IT</td>
<td>1.5</td>
<td>4.5</td>
</tr>
<tr>
<td>CY</td>
<td>c</td>
<td>c</td>
</tr>
<tr>
<td>LV</td>
<td>16.9</td>
<td>5.6</td>
</tr>
<tr>
<td>LT</td>
<td>-27.7</td>
<td>-15.4</td>
</tr>
<tr>
<td>LU</td>
<td>c</td>
<td>c</td>
</tr>
<tr>
<td>HU</td>
<td>21.6</td>
<td>29.5</td>
</tr>
<tr>
<td>MT</td>
<td>:</td>
<td>:</td>
</tr>
<tr>
<td>NL</td>
<td>17.1</td>
<td>18.1</td>
</tr>
<tr>
<td>AT</td>
<td>11.9</td>
<td>16.7</td>
</tr>
<tr>
<td>PL</td>
<td>13.8</td>
<td>13.0</td>
</tr>
<tr>
<td>PT</td>
<td>15.2</td>
<td>10.1</td>
</tr>
<tr>
<td>RO</td>
<td>-18.1</td>
<td>-4.0</td>
</tr>
<tr>
<td>SI</td>
<td>5.0</td>
<td>-0.5</td>
</tr>
<tr>
<td>SK</td>
<td>11.0</td>
<td>25.0</td>
</tr>
<tr>
<td>FI</td>
<td>14.6</td>
<td>18.1</td>
</tr>
<tr>
<td>SE</td>
<td>12.8</td>
<td>16.2</td>
</tr>
<tr>
<td>UK</td>
<td>1.0</td>
<td>24.6</td>
</tr>
<tr>
<td>IS</td>
<td>:</td>
<td>:</td>
</tr>
<tr>
<td>NO</td>
<td>8.1</td>
<td>14.3</td>
</tr>
<tr>
<td>CH</td>
<td>9.7</td>
<td>16.5</td>
</tr>
<tr>
<td>ME</td>
<td>c</td>
<td>c</td>
</tr>
<tr>
<td>MK</td>
<td>-14.2</td>
<td>-30.8</td>
</tr>
<tr>
<td>RS</td>
<td>1.3</td>
<td>-4.3</td>
</tr>
<tr>
<td>TR</td>
<td>31.6</td>
<td>19.7</td>
</tr>
</tbody>
</table>

Source: She Figures 2018
The gender pay gap for scientific R&D activities and the total economy in 2014, broken down in four age categories (younger than 35; 35 to 44 years old; 45 to 54 years old; 55 years old and older), is presented in Table 1. The relative gender pay gap in total economy follows the same pattern with age as that in R&D.

On average at the EU level, the gender pay gap is almost similar to that of the total economy, at about 10% in early careers, 15% to 20% mid-career, to 21% at senior level. However, considerable discrepancy is shown between countries; with for example, a considerable gender pay gap in all age categories in the Czech Republic (18%, 41%, 24% and 27% respectively) and the inverse situation in Romania, women there being paid more than men in R&D with a -18%, -4%, -7% and -5% gender gap in favour of women, while such a tendency is not visible in Romania’s total economy. Another interesting example is that of Lithuania, where young to mid-career women are paid more than their counterparts (-28% and -15% gap), while at later career stages they are paid much less (32% and 43%). This two-stage tendency is not seen in other countries, and also does not show correlation to the gender pay gap evolution in Lithuania’s total economy, potentially pointing at a phenomenon characteristic of careers in R&D.

2.6 Gender equality policies and gender distribution in Marie Skłodowska-Curie Actions

Since their creation, MSCA has placed strong emphasis on promoting gender and equal opportunities for their fellows, and within their projects. Indeed, the programme requires transparent recruitment and high-quality employment and working conditions for researchers, in line with the principles of the European Charter for Researchers and the Code of Conduct for the Recruitment of Researchers.

In addition, MSCA grants permit part-time working and parental leave. Post-doctoral researchers who wish to resume their career after a break, for example to raise children, can apply to a dedicated panel of the MSCA Individual Fellowships.

In practice, MSCA features four actions: RISE, which funds exchanges between several research institutions by allowing mobility of students, staff, researchers and professors alike; COFUND, which supports doctoral programmes for PhD candidates, as well as fellowship programmes for experienced researchers; ITN, which funds doctoral programmes; and IF, which funds individual projects of experienced researchers.

Over the five years of the running Horizon 2020 calls (2014-2018), MSCA supported a total of around 25,000 researchers, out of which 40% were women. A breakdown of the ration of men and women per Action is displayed in Figure 5. Although no significant difference can be found in the gender distribution of the COFUND, ITN and IF Actions (respectively with a gender gap of 8.7, 7.5 and 7.2 percentage points), it is shown that the RISE Action displays a larger gender gap with 13.2 percentage points.
This can be attributed to the fact that RISE projects involve senior as well as early-stage and experienced researchers, whereas other Actions only involve early stage- and experienced researchers (defined as pre- and post-doctoral researchers).

All of these values are notably higher than the gender gap in EU-28 as shown in Figure 1, since we would only expect between 2014 and 2018 a 3 point gap at the doctoral stage (ITN), 4.5 points at post-doctoral stage (COFUND and IF), and an aggregate of 9.5 points for a mix of senior, mid-career, post-doctoral and doctoral stages (RISE). The gender gap across all MSCA Actions therefore appear to be roughly four to five points above that expected from statistics at the EU level, perhaps pointing to further efforts to be made.

The only programme allowing individual researchers to directly apply for funding (i.e. not via their institution) is MSCA-IF. For this programme we can extract success rates of men and women and analyse their differences, as shown in Figure 6. Although the total number of female applicants over the 2014-2018 period is much lower than the number of male applicants (roughly 17,550 versus 25,750), we can see that their average success rate is higher, resulting in female researchers being better represented after evaluation stage than at proposal submission stage (2,770 versus 3,620).

Figure 6 shows that on average, women are 1.7 percentage points more successful than men at securing MSCA-IF funding.
There are strong discrepancies between panels. The career restart panel features the most female-favouring score, with a 4.5 percentage points advantage to women over men, followed by social sciences and physics with 3.2 points; while results in the economics panel seem skewed towards men, with 3.5 points disadvantage.

2.7 Gender equality policies and gender distribution in European Research Council grants

The ERC has seven working groups dedicated to the advancement of specific topics, such as open access international participation. One of them is focused on gender balance. Since women and men are equally able to perform excellent frontier research, each process within the ERC – from creating awareness about the ERC to signing of grant agreements – is designed to give equal opportunities to men and women. The purpose of the gender balance working group, launched in 2008, is to monitor these aspects at all stages.

The Working Group on Gender Balance drafted the ERC Gender Equality Plan 2007-2013 and the ERC Gender Equality Plan 2014-2020, endorsed by the ERC Scientific Council, which main objectives are:

- **Raising awareness about the ERC gender policy** among potential applicants
- **Working towards improving gender balance** among ERC candidates and within ERC-funded research teams
- **Identifying and removing** any potential gender bias in the ERC evaluation procedures
- **Embedding gender awareness** within all levels of the ERC processes - while keeping focus on excellence
- **Striving for gender balance** among the ERC peer reviewers and other relevant ERC bodies

Figure 7. Men and women success rates to the ERC’s Stg, Cog and AdG calls, 2007-2017
To achieve these objectives, the working group has been monitoring the evolution of gender balance of ERC funded projects since its inception, the latest available statistics dating from April 2018.

The ERC proposes three main grant categories: the Starting Grants (StG, 2-7 years post PhD completion), the Consolidator Grants (CoG, 7-14 years – since 2013 only), and the Advanced Grants (AdG, 10+ year and excellent track record); and features three main evaluation panels: life sciences (LS), physical sciences and engineering (PE), and social sciences and humanities (SH).

The breakdown of men’s and women’s success rate per type of call and year is displayed in Figure 7 (above). The tendency shown is positive, as while success rates of women were significantly inferior to those of men prior to Horizon 2020 (i.e. until 2013), statistics show that equilibrium is almost reached on average for all the calls within Horizon 2020 (2014-2017). Until 2013 the total success rate was 11% for men and only 8% for women (Stg: 10%- 8%; CoG: 9%-7%; AdG: 14%-12%), but for the whole period 2014-2017 success rates are equal with 13% for both men and women (Stg: 13%-12%; CoG: 14%-15%; AdG: 11%-11%).

![Figure 8. Sex difference in success rates for ERC calls, per panel, 2014-2017](http://ec.europa.eu/euraxess)

However, this tendency does not equally apply to all domains of science. Figure 8 shows the differential success rate by panel and call for the Horizon 2020 calls. The life sciences panel consistently features lower success rates for women, with a particularly strong imbalance for the StG call (early-career researchers) at -4.5 percentage points. On the other hand, the physical sciences and engineering panel shows success rates slightly in favour of women at all career stages; while the social sciences and humanities panel features more balanced statistics.
When it comes to the total number applicants (i.e. irrespective of their success or failure in securing the grant), a positive tendency is also observed as shown in Figure 9. The total share of female applicants steadily grows since 2014, reaching 30% in 2017 and as high as 37% for StG only in the same year. The lowest shares of women participation are reached in the AdG (senior level), in agreement with the ‘leaky pipeline’ effect and the statistics at EU level displayed in Figure 1 and 2 (24% of women at senior level overall, only 15% in STEM fields in 2016).

Figure 9. Share of female applicants to ERC call, per grant type, 2014-2017
3 In focus: Interview with Charuta Kulkarni, MSCA-Individual Fellow, The Open University, UK

How did you get to know about the MSCA Individual Fellowship and what motivated you to apply?

While in the United States, my doctoral work actually involved studying environmental history of European landscapes located in the Danube valley. So I always saw Europe as a natural place to seek prospective opportunities. Meanwhile, environmental history and policy landscape in India never left my mind and personal motivation to utilise interdisciplinary knowledge towards a policy relevant work in my homeland never diminished. The key promise of the MSCA Individual Fellowship (MSCA-IF) is unprecedented freedom in terms of project design, collaboration and travel, and it is this – the freedom – that drew me to it. The MSCA-IF offered me space and time to build excellent science with sincere policy implications for one of the key societal challenges in India and steered geographical diversification of my career trajectory in the direction I wished for.

What have been the benefits of your MSCA Individual Fellowship?

Again, the answer would be freedom! And, it indeed came in various shapes and forms. Firstly, I was free to choose my collaborators from Europe and I chose to build a team of forest ecologists, fire paleoecologists and policy experts, who are equally invested in exploring long-term interactions among climate, landscapes, and people with a broader goal of understanding sustainability and policymaking. A multitude of collaborations emerged out of my MSCA-IF experience, which will continue to benefit my career for years. Secondly, the MSCA-IF offers substantial bottom-up funding in the form of exceptional personal living, family, mobility allowances and research, training and networking funds. In the era where academics are expected to be ‘productive’ with inadequate salaries and scarce research funds, I appreciate H2020’s approach in delivering a ‘fair share’ to researchers, so they can focus on diversifying their competencies through advanced training, international mobility, and independence in communicating science with peers and public alike.

What would you say the biggest challenge in the application process was? How did you overcome it?

For me, undoubtedly the strict ten-page limit for the proposal! Frankly speaking, brevity is not my forte (Can’t you see already? 😊) but with years of training in scientific writing, I am now able to judge when and where to cut. Another important sub-element of the MSCA-IF proposal is that the proposal has to be written in a jargon-free manner, in a language understood by a layperson. This often comes as a challenge as scientists are largely trained in technical writing and it often takes practice and personal inclination
to ‘unpack’ science without losing its essence. In my case, what came in handy is the experience I gathered from participating and organising science communication and outreach events and from multilingual ‘scientific storytelling’ with Marathi and English media over the years.

**From your experiences, how does the research environment in the UK and France differ from that in India?**

More than anything, the differences lie in the approach and vision with which research is conducted. While the Indian research landscape is taking baby steps towards interdisciplinarity, it often has strong disciplinary walls when it comes to designing and implementing research projects. I found the research environment in the UK and France is more open to experimenting with multi- and interdisciplinary approaches to a problem. This reflects in the vision and the structure of research institutes across Europe, which purposefully recruit scientists from varied natural and social science backgrounds under the single roof. This approach creates inherent spaces for dialogues among and across disciplines.

**What were the most important experiences that you draw from your time in Europe? And why would you recommend Europe as a research and study destination?**

It is hardly a secret that Europe has a lot to offer both in terms of work and life, and also a healthy balance between the two. Personally speaking, growing up in a geographically and culturally diverse country like India has instilled deep love for nature and cultures within me; the love which only grew with my time in Europe. Amid recollecting countless productive professional activities over the two years, I find them inseparable from extremely diverse social-cultural experiences I had at each place – watching classic Shakespearean plays in Britain, sunbathing on bright, sunny Mediterranean beaches, wine tasting at a 1,000 year-old Swiss vineyard, visiting prehistoric settlements in Irish bogs to name a few. So to my prospective colleagues I would say, while globe-trotting becomes a part and parcel of a researcher’s life, one could start to do so from Europe, which has immense opportunities for personal and professional growth.

**How do you think EURAXESS India can further promote research collaborations between Europe and India?**

Oh, there are current EURAXESS India activities like European Information Days, European Research Days and Science Slams doing a great job of promoting a wide range of funding opportunities to various corners of India. So I would rather comment on strengthening prospective research collaborations starting from fellows. Hailing from personal experiences, the process of settling in Europe is often overwhelming with multiple lines of bureaucracy from visas to pension plans, with each host country and institution quite different. So I suggest newly funded Indian fellows would benefit from a day-long ‘sensitisation’ workshop with official representatives of host countries laying out a loose roadmap for ‘what comes next’. This could also be an occasion for fellows to connect with one another and eventually form a stronger network boosting MCAA Indian Chapter. Importantly, unavailability of long-term Schengen and other European
country visas for third-country nationals are a serious issue – as an MSCA-fellow, I found myself trapped with a generous mobility allowance without actual mobility within Europe! This will indeed require multi-level diplomacy and policy changes between European countries and third countries. However, with Indian nationals among the highest in third-country MSCA researchers, I think EURAXESS India should stand as a strong advocate for this cause. After all, strengthening fellows means promoting and strengthening research collaborations between Europe and India.

*Europe is striving for gender equality in universities and research environments. What has been your experience as an international female researcher in Europe?*

I would say the experience has been quite pleasant, overall. All the European institutions I conducted MSCA-IF work at seem to offer an equitable work environment, which, I trust, would positively impact research practices for male-female researchers alike. However, one cannot overlook that the degree of ‘equitability’ varies from institution to institution, and discipline to discipline. For example, in my field of research in geological-agricultural sciences, female representation has been historically low and female voices had not been sincerely heard in the past. With this background, I found myself giving a keynote at the 4th World Congress on Agroforestry based on my MSCA-IF work! It was a positive, stimulating experience as an early career female researcher and I would surely replicate it for my fellow female and other historically under-represented researchers.

*Could you kindly share some tip to future applicants to the MSCA-IF?*

Oh absolutely! I would rather present a bulleted list for my so-called words of wisdom!

- It takes time in building working relationships especially when one doesn't already know the people s/he wants to work with. Start early on in finding your host institution and in communicating your project ideas with your supervisors. There are tons of calls available on EURAXESS India website for you to choose from. Alternatively, be resourceful in networking among your existing network via platforms like ResearchGate, Academia, etc.

- Same tips for proposal writing – first, writing takes time and especially when it comes to a very tight ten-page proposal such as MSCA-IF, and remember it is to be written in a clear, jargon-free manner. Start early on, pore over and make use of existing resources available in the MSCA-IF funding call. Studying writing guides like this are of serious help!

- Get involved in social media communities including Marie Curie Fellows Association to learn more from existing MSCA-IFs and alumni. Also, I am happy to chat about MSCA-IF and reachable at ckulkarni@gradcenter.cuny.edu.

---

**MSCA-Individual Fellowship Call**

The 2020 MSCA-Individual Fellowship Call will open on April 8. Closing deadline is September 9. For more information click [here](http://ec.europa.eu/euraxess).

---

[http://ec.europa.eu/euraxess](http://ec.europa.eu/euraxess)
4 In case you missed it...

4.1 From our Flashnotes (January-March)
(click on the respective link for more details)

Selected News and still open Calls (in order of publication on EURAXESS India website):

News: [Interview with Viraj Torsekar, Postdoc Fellow Hebrew University of Jerusalem, and Science Slam Finalist 2018](#)

Call: [15 PhD positions in the MSCA-ITN ‘BIOMOLMACS’ (Molecular Machines)](#)

Call: [15 PhD positions available at MSCA-ITN BIOREMIA (‘BIOfilm-REsistant Materials for hard tissue Implant Applications’)](#)

Call: [Spain: 20 Postdoc fellowship positions available at Ikerbasque – the Basque Foundation for Science](#)

Call: [Long-term Fellowships in Wallonia-Brussels, Belgium – BEWARE (MSCA COFUND)](#)

Call: [INNOWWIDE Call 2 for applications for Viability Assessment Projects (VAPs) in international markets](#)

Call: [NAWA has opened the second edition of the Ulam Programme for post-doctoral scientists](#)

Call: [10 PhD positions in organic chemistry on MSCA Innovative Training Network ‘CO2PERAT’](#)

Call: [Germany – Fully funded PhD positions in natural sciences & engineering at Hector Fellow Academy](#)

Call: [13 PhD research positions in MSCA-ITN "BiD4BEST" in astrophysical research](#)

News: [Take your next career step with a MSCA Individual Fellowship at the University of Oslo – Faculty of Mathematics and Natural Sciences, Norway!](#)

Call: [15 PhD positions for Early Stage Researcher (ESR) as part of the MSCA funded Programme on ‘Lifespan Regulation Mechanisms in Health and Disease’](#)

Call: [8 Short-term Early Stage Researcher positions available through the EvoCELL ITN (single cell genomics, evo-devo and science outreach)](#)

Call: [15 PhD Fellowship in MSCA-ITN ‘COBRA – COnversational BRAins’ (linguistics, cognitive sciences)](#)

News: [Take your next career step with a MSCA Individual Fellowship at the Malta Council for Science and Technology, Malta!](#)

Call: [HOSTING OFFERS FOR Marie Skłodowska-Curie FELLOWSHIPS (Post-doctoral researchers) – UCLouvain, Belgium](#)

Call: [Funding opportunity for projects involving Artificial intelligence for advancing healthcare across India and Sweden](#)
News: Information about the UK's EU Exit and Horizon 2020 participation

Call: Funding & Facilitation opportunities for joint Industrial R&D projects, between companies from India & Israel

News: Marathon at the University of Padua dedicated for Marie Sklodowska-Curie Candidates

Call: India–Spain Programme of Co-Operation on Industrial Research & Development 2020

News: JOIN EURAXESS TODAY TO BOOST YOUR CAREER GROWTH!

Call: 15 PhD positions in the MSCA-ITN ‘CCIMC’ (coordination chemistry and molecular catalysis)

Call: 15 ESR positions (PhD) in ITN ENTRAIN VISION (Vision restoration)

Call: Bilateral cooperation funding opportunities between Portugal and India on Scientific Research and Technological Development

Call: H2020 HEL4CHIROLED Marie Skłodowska-Curie ITN: 11 Early Stage Researcher Fellowships (ESR) - 3 years PhD positions

Call: H2020 ETN project MEFISTA – Multi-scale fibre-based optical frequency combs: science, technology and applications

Call: 3 ESR positions: Marie Skłodowska-Curie European Industrial Doctorate Network on DESIGN-EID

Call: 7 PhD positions Translational SYStemcs (TranSYS) - Rolling recruitment

Call: PhD Research Fellowship opportunity in Political Science (Autocratic Politics)

Call: Post-doctoral Position available in the field of Theoretical Quantum Chemistry

Call: Call for funding of joint industrial R&D project proposals within the framework of the Eureka network

Call: 12 PhD positions on MSCA Innovative Training Network ‘Policies for Smart Specialisation’ (POLISS)

Call: Funding Opportunity for joint research projects between Sweden and India on Smart Grids

Call: Postdoctoral position available for a highly motivated applicant experienced in cell biology and/or biophysics

News: COVID-19: European Commission scales up research funding

News: MORE4 survey on mobility patterns and career paths of researchers working outside Europe

Call: Norway: 48 Postdoctoral Fellowships in Health Life Sciences on MSCA-funded SCIENTIA project
Call: Applications open for Falling Walls Lab India 2020!
Call: The German Chancellor Fellowship for tomorrow’s leaders
Call: Call for Tenders for International Intellectual Property SME Helpdesk – India

About us

EURAXESS India is a networking tool for European researchers active in India and for Indian and international researchers wishing to collaborate with and/or pursue a career in Europe. EURAXESS India provides information about research in Europe, European research policy, opportunities for research funding, for EU-India and international collaboration and for transnational mobility. Membership is free.

Visit us at india.euraxess.org and join the EURAXESS India community.

EURAXESS Worldwide has dedicated teams in the following countries and regions ready to assist you: ASEAN (focus on Singapore, Thailand, Indonesia, Malaysia, and Vietnam), Latin America and the Caribbean (LAC, focus on Brazil, Argentina, Chile, Mexico, and Colombia), China, India, Japan, Korea, and North America (USA and Canada). Additionally, a EURAXESS information website for Australia and New Zealand went online in June 2018.