Contents

EURAXESS Members in Focus: Iceland 2
 Icelandic S&T Policy and Strategy 2
 Funding .. 3
 Icelandic Research and Innovation institutions 3
 Study in Iceland .. 4
Hot topic: How to find European partners for H2020 research consortia ... 6
Hot topic: How to find European partners for H2020 research consortia ... 6

How can a research group in Japan become involved in an H2020 research consortium? .. 6
Which attributes should a good research partner have? 6
How can researchers in Japan build up their research network? 7
Are there platforms to find European research partners? 8
How can junior researchers look for a supervisor in Europe to host their MSCA fellowship? 8
Which would be the steps for being involved in an H2020 project? 9
Other opportunities for researchers in Japan to develop their competencies in European projects? 9
Meet Ana Verissimo, Winner at Falling Walls Lab Tokyo 2017 10

EURAXESS Japan Activities Update 13
 Deadline soon! Call for abstracts: science communication contest Falling Walls Lab Tokyo 2018 13
 EURAXESS Japan Tour @Tokushima U, 12 April 13
 Horizon 2020 seminar @Kobe U, 13 April 14
 European Higher Education Fair, Meiji U, 19 May 14
Located in the North-Atlantic ocean close by the Arctic Circle, Iceland is very much a bridge between continents. It takes approximately five hours to fly from New York to Reykjavik, and three hours from London.

Iceland is a progressive, modern society that continuously ranks at the top of measurements for quality of life, such as the United Nations Human Development Index. Its economy is one of the most productive economies in the world, per-capita, and it is annually considered to be one of greenest countries on the planet, due in large parts to its vast renewable energy resources.

The Icelandic system of research and development is a multilevel system with a dispersed decision-making structure. It has a number of fully-fledged research institutions, essential funds and a strong force of well-trained scientists, and covers all major fields in science and technology. Icelandic scientists face a challenging task of maintaining the quality and range of research activities. Concentration of research in key areas is important in order to optimize resources.

Icelandic S&T Policy and Strategy

The Science and Technology Policy Council is responsible for setting public policy in matters of science and technology in Iceland. It’s role is to support scientific research, science education and technological development in Iceland so as to strengthen the foundations of the Icelandic culture and increase the competitiveness of the economy. The Science and Technology Policy Council operates pursuant to Act No 2/2003. The Council is chaired by the Prime Minister and its members include the Minister of Finance and Economic Affairs, the Minister of Education, Science and Culture, the Minister of Tourism, Industry and Innovation as well as 16 representatives nominated by different ministries and higher education institutions and by the social partners. In addition, the chair may appoint up to four other ministers to the Council. The Council sets the official science and technology policy for a three-year period.

The Icelandic Centre for Research (RANNIS) supports research, research studies, technical development and innovation in Iceland. RANNIS operates under the Ministry of Education, Science and Culture and cooperates closely with the Icelandic Science and Technology Policy Council providing professional assistance regarding the preparation and implementation of science and technology policy in Iceland. RANNIS administers competitive funds and strategic research programmes, coordinates and promotes Icelandic participation in collaborative international projects in science and technology and promotes public awareness of research and innovation in Iceland.
EURAXESS Japan Quarterly Newsletter

SNAPSHOT

Sampling Lava Flow in Iceland

Yuhji Yamamoto (Japan)

Dr. Yamamoto is associate professor at the Center for Advanced Marine Core Research, Kochi University, Japan. Over the past 15 years his research has focused on the evolution of Earth’s magnetic field. With the support of the Watanabe Trust Fund hosted at the University of Iceland, he resampled the lavas of the Lundarháls ridge in the Borgarfjörður region of western Iceland. With the help of Dr. Maxwell Brown, a research specialist in paleomagnetism at the Institute of Earth Sciences, University of Iceland, he collected at least five new samples per each type of lava flow [source].

Funding

THE ICELANDIC RESEARCH FUND (IRF) is an open competitive research fund that supports scholarly research and postgraduate research education in Iceland. To this end, the IRF supports clearly defined research projects of individuals, research groups, universities, research institutes and private enterprises. IRF shall award grants in accordance with the general emphases of the Science and Technology Policy Council and based on an expert assessment of the quality of research projects, the capability of the individuals carrying out the proposed research and their ability to devote time and effort to the project.

The Technology Development Fund is a public, competitive fund that supports innovation and technology development projects. The role of the fund is to support research and development activities, which aim towards innovation in Icelandic industry and increased competitiveness of the Icelandic economy. The fund supports projects along the R&D&I value chain from applied research projects, development of start-up companies, to the first steps into marketing. The fund operates according to the policy of The Science and Technology Policy Council, which role is to promote scientific research and research training in the sciences and encourage technological progress in Iceland.

Icelandic Research and Innovation institutions

The Árni Magnússon Institute for Icelandic Studies was established in 2006 with the merger of several Icelandic institutes in the field. The institute is located in Reykjavík and has the role of preserving and studying medieval Icelandic manuscripts and disseminating knowledge to the scientific community and public at large about the its research in Icelandic studies, history, langue and literature as well as preserve and augment the collections within its care.

Matis Ltd. is an Icelandic Food and Biotech R&D institute founded in 2007. For years, Matís has been considered a
valuable partner in multiple, miscellaneous projects and has played a leading role in large international projects with some of the largest food and ingredient companies in the world. Matis employs around 100 staff in offices, laboratories or Food Innovation Centres located in cities or towns around Iceland. Matis’ turnover in 2014 was around $11.3 million USD, of which approximately 35% comes from international cooperation.

Iceland GeoSurvey is a self-financing, state-owned, non-profit institution established in 2003. It is based on seven decades of continuous experience in the field of geothermal and hydropower research and development. During this period Iceland GeoSurvey has provided consulting, training, and scientific services to the Icelandic power industry and the Icelandic government, and to numerous foreign companies and governments all over the world. Although the focus is on geothermal exploration, development, and utilization, Iceland GeoSurvey’s experience covers many other geoscience-related fields as well, including groundwater studies, marine geology, and environmental monitoring.

The Icelandic Meteorological Office (IMO) is a governmental institution under the Ministry of the Environment and Natural Resources. The research focus of IMO is on weather and climate, atmospheric processes, glacier and avalanche studies, hydrological systems, earthquake and volcanic processes and geohazards. IMO also focuses on research in multi-parameter geophysical monitoring to develop more accurate forecasts of hazardous events. IMO has participated in several European and Nordic funded research projects, having the role of lead partner in many of them.

Marine and Freshwater Research Institute (MFRI) is a government institute under the auspices of the Ministry of Industries and Innovation. The institute employs around 190 staff, operates 2 research vessels and 10 branches around the country, including an aquaculture experimental station. MFRI is leading in marine and freshwater research in Icelandic territories and the arctic, providing advice on sustainable use and protection of the environment. The main research priorities are research on marine and freshwater ecosystems, sustainable exploitation of main stocks, ecosystem approach to fisheries management, research on fishing technology and seafloor and habitat mapping. MFRI is highly regarded in the scientific community and is therefore a valuable research partner, active at an international level with a strong infrastructure and high quality equipment. MFRI is an appealing work place with progressive human resources policy to strengthen the institute’s competitiveness and an effective gender equality policy.

Study in Iceland

Study in Iceland is a service housed within the Icelandic Center for Research. The new website, http://study.iceland.is, was launched in 2017 brings together information and resources for international students interested at studying at

RESEARCH UNIVERSITIES

University of Iceland
The University of Iceland is a research university and places great emphasis on quality in research. The university operates dozens of research institutions and centre.

Reykjavik University
Reykjavik University has a clear and progressive research strategy.

University of Akureyri
Research is one of the fundamental aspects of the University of Akureyri.

Bifrost University

The Agricultural University of Iceland

Iceland Academy of the Arts

Holar University College

http://ec.europa.eu/euraxess
one of Iceland’s seven universities. The website is run in collaboration with Íslandsstofa (Promote Iceland) and provides information on university education, Icelandic as a foreign language, summer schools, life in Iceland, and a practical guide for applicants and foreign students. Study in Iceland also provides advice and signposting to services through e-mail or phone for interested parties.

Important information for incoming researchers: EURAXESS Iceland

The Icelandic Centre for Research is the coordinator of EURAXESS in Iceland and the EURAXESS Bridgehead organization. RANNIS coordinates and promotes Icelandic participation in international cooperation in science, education and culture and interacts with corresponding agencies and research councils in other countries and provides assistance to incoming researchers with advice on daily life and formalities of moving to Iceland. The EURAXESS network in Iceland is quite small as it consists of three members in the country: in addition to RANNIS the University of Iceland and the University of Reykjavik are established as EURAXESS contact points.
Hot topic: How to find European partners for H2020 research consortia

Interview with Dr. Corina ABRAHAM-BARNA, National Contact Point for Marie Skłodowska-Curie Actions in Romania

How can a research group in Japan become involved in an H2020 research consortium?

The best way to build a project consortium is to use one’s professional and personal connections, and subsequently to develop the network, based on the specific roles to be played in the project by all partners. As researchers, we are constantly collaborating with peers from other countries. This group of people should be the first network to be mobilised when looking for collaborators to join or form an H2020 consortium. However, researchers should also reach out beyond their personal connections to those colleagues whose work they draw on and with whom they share common research interests. Researchers in Asia should not hesitate to get in direct contact with their Europe contacts, asking them if they are interested to be involved in a specific call for proposals.

On the other hand, structuring a good consortium also means adhering to the principles of complementarity and interdisciplinarity, as every institution needs to fulfil specific tasks in the project. Building a consortium for a project is like reconstructing a jigsaw, where the pieces are not the same, but they need to fit together in a way that ensures all work packages and tasks described in the call details are covered. So, we need to involve not only colleagues from our field, but also complementary research teams.

In the frame of the Horizon 2020 programme (H2020), it is a compulsory requirement that collaborative research projects involve at least 3 participants from 3 different EU Member States or Associated Countries [note: in the case of MSCA-RISE calls, the minimum configuration could be even simpler, with 2 participants from 2 different EU Member States or Associated Countries; and 1 participant from Japan]. Once this basic requirement has been fulfilled, additional partners from non-European countries – for example, research players based in Japan – can join the consortium.

Which attributes should a good research partner have?

Since the three evaluation and award criteria of Horizon 2020 proposals are excellence, impact as well as quality and efficiency of the implementation, high levels of scientific expertise and
experience of the core partners are essential, and their excellence must be described in the proposal.

When choosing partners for a research consortium it is important to first get a clear understanding of the project goals. As a second step it is essential to carefully define the activities which are necessary to accomplish these goals and to group them into so-called work packages, for example management, experimental activities, dissemination etc. The work packages can then be divided into different tasks with specific activities and assigned to the different partners of the consortium. It goes without saying that the partners should be chosen based on their ability to accomplish the tasks set out in the project.

Research actors from academia and industry, including SMEs, but also NGOs can be partners of a research consortium. Most importantly, all partners need to be reliable and committed to the project and their obligations. Each partner should bring to the project excellent skills in a particular scientific field. While it is not obligatory, an ideal consortium partner already has previous experience in EU projects or international research cooperation. The partners within your research consortium should be well balanced in terms of geographical spread, expertise and type of organisation (Academia, Research centres, Industry, SMEs etc.). A fully integrated and balanced team should have a critical mass of research staff, a clearly described complementarity of the different partners, with a clear designation of roles and functions that rules out overlap or duplication. With regards to ensuring the societal impact of the research project being carried out, the consortium should carefully consider involving SMEs, consumer organisation, or associations etc.

When deliberating whether to choose partners from existing contacts or to approach new ones it is important to assess the following pros and cons. Existing contacts are likely most effective, most reliable and most predictable given a history of previous collaborations. However, past collaborators may at times be less suitable for a new project, especially when looking for complementary skills. New contacts may be a greater risk but may be a better option when looking for complementary skill sets in the different partners.

How can researchers in Japan build up their research network?

The European Commission provides a large number of networking opportunities for research actors. The Participant Portal offers a partnering tool. Representatives of the European Commission, often in partnership with EURAXESS Worldwide, are frequently organising H2020 Info Days, project writing workshops and brokerage or match making events. Networking events are important for finding partners. Make sure to join your respective EURAXESS Worldwide network to stay updated on upcoming events and opportunities.

Researchers should make use of the scientific events they attend for networking purposes. Remember to be pragmatic and speak to colleagues at conferences and events; invite them to join a new project and communicate your interest to join their projects as well. When attending scientific events, do make sure to come prepared with a clear...
idea of your objectives. Preparing an ‘elevator pitch’ (a very short oral presentation) could be crucial in securing interest of potential new partners for your project. Make use of those discussions during the coffee break and always follow up with an email.

It is important to continue investing in the relationship with your research partners even after the project has been completed. Do make sure you remain visible as a reliable partner.

Are there platforms to find European research partners?

The H2020 project management tool is the Participant Portal, which includes a Partner Finding Tool. Moreover, a new tool for finding partners for concrete calls has recently been created. On every call page, potential applicants will now find a Call for Partner Search, where organisations are expressing their interest in collaborating with other researchers in this specific topic. Interested research actors can publish their partner requests for open and forthcoming topics after logging into the Participant Portal.

Please let me emphasise that individual researchers wishing to submit proposals to specific calls need to create a personal profile on the Participant Portal. Institutions intending to participate in projects are required to create a unique organisation profile to receive a PIC number - unique identifier for organisations. This is a 9-digit Participant Identification Code (PIC).

Please do check whether your organisation has already been registered by using the PIC search form. If this is the case, there is no need to register it again.

The Projects & Results Service CORDIS is another extremely useful database of institutions and/or research consortia that have successfully participated in previous projects funded by Horizon 2020 (or any of the previous funding programmes).

Please do also make use of the EURAXESS website which offers a partner finding tool.

How can junior researchers look for a supervisor in Europe to host their MSCA fellowship?

The EURAXESS Portal is an important tool for institutions and researchers who are looking for collaborators. Registration is free of charge and allows access to a growing global network of mobile researchers. European institutions are posting their offers to host an MSCA fellow on the EURAXESS Portal.

The network of the National Contact Points for Marie Skłodowska-Curie Actions (MSCA NCPs) are also offering support in finding a European host and partner. You can find ‘Expressions of Interest’ (EOI) for researchers who are looking for a partner institution for MSCA projects,
or for host institution for MSCA fellowships or MSCA fellowship positions published on their website.

Which would be the steps for being involved in an H2020 project?

The first step is to search the H2020 Participant Portal for a suitable call for proposals.

Once you have selected a call make sure to carefully study the call description, terms of reference and all related documents. Do make use of the H2020 Online Manual, a detailed guide on the formal procedures starting from proposal submission to grant management.

After identifying a suitable call for proposals, the second step is to find project partners or to apply as an individual. Make use of the different partner search services in finding partner organisations.

The third step is to create an individual account on the Participant Portal.

The fourth step is to register your organisation. Start by checking first on the Organisation Register page if your organisation is already registered. Only if you do not find your organisation there, you should start its registration by clicking on the Register Organisation button.

Step Five is step is to submit your project proposal to the European Commission. To submit your project proposal, you need to go to the section Electronic Proposal Submission on a specific Topic page that belongs to a call. You need to be logged in with your Participant Portal account to start filling in standard forms and to submit your proposal.

If you are invited by the coordinator to join a project proposal, you need to create a personal profile, and to send to the coordinator the email address used for your Participant Portal profile and the PIC number of your institution.

Other opportunities for researchers in Japan to develop their competencies in European projects?

As individuals, a researcher can join the database of independent experts. The European Commission frequently appoints independent experts to assist with assignments that include the evaluation of proposals, the monitoring of projects, the evaluation of programmes, and the design of policy. The opportunity to become an expert is open to any researcher with a high level of expertise in his or her relevant fields and with the flexibility to be involved in occasional, short-term assignments. Participation in the evaluation process will be financially compensated and is usually done online; at times there may be a meeting held in Brussels, Belgium.

Dr. Corina ABRAHAM-BARNA, thank you very much for your advice!
Meet Ana Verissimo, Winner at Falling Walls Lab Tokyo 2017

Ana, why did you first come to Japan and how did you choose your host institution?

During my first postdoc, I became interested in 3D bioprinting. With this approach, the use of animals is avoided and, by using human tissue, we can also overcome differences between species. I was particularly interested in a new method that had been developed in Japan (by my Japanese PI), which was much more natural (biologically speaking), as it used cells only. So, I wrote a fellowship application to JSPS which was funded after peer-review and in November 2015 I moved to Japan. I didn’t really choose the institution but rather the person I wanted to work with and the project.

How did you find out about FWL Tokyo and what caught your interest?

I found out about FWL Tokyo on a newsletter from EURAXESS and I have always been interested in science communication, so that caught my attention. I liked the format and aim, as well as the bigger context within the initiatives of the Falling Walls Foundation. Also, I may have a little bit of a competitive spirit!

Please describe to us your impression on FWL Tokyo. How was the organisation and support from DWIH Tokyo/EURAXESS?

FWL Tokyo was a great experience, as I got to learn about so many interesting projects in diverse fields, which is not often the case at (life) science-oriented events. Organisation and support from DWIH Tokyo/EURAXESS were excellent, as they provided assistance and information during all stages, from application, to event preparation, on the day of the event and dealing with administration paperwork afterwards. Everyone involved was professional but friendly and approachable and, most importantly, the whole process was very straightforward.

FWL Tokyo is an international science communication contest. How important is science communication to you? On what aspect did you lay value to present your research project to a non-specialist audience at FWL Tokyo?

I think today science communication is fundamental in many ways. There is an obvious need to communicate with the public (public engagement) and to inspire the next generation (schools outreach and activities for children). In addition, as STEM fields evolve and get more specialized (and complicated!), science communication in simple terms is also needed between researchers in...
multidisciplinary projects, between academia and industry, or academia, industry and policy-makers.

When communicating with a non-specialist audience, I always use simple words and essentially images and pictures rather than lengthy text, if I am using visual aids. The idea here was to communicate the essence, function, applications and beneficiaries of the technology rather than going over very specific details. I tried to use a bit of humour and images that somehow made a parallel between the technology and every-day items that the public could relate to.

How important do you think science communication is to the general public?

People are naturally curious and nowadays science and technology are all around us, from mobile phones to pets’ microchips. Science communication to the general public helps increase scientific literacy and awareness. This is translated into more knowledge and, more importantly, better decision-making. In a time when there is so much confusing and contradictory information on the internet, without scientific literacy, it is very difficult to distinguish between what is right and what is wrong. From more expensive products with “special” ingredients that do nothing for you to products that can actually be dangerous. Scientific literacy empowers people not only to understand their surroundings and make better decisions for their lives (health, shopping, etc.), but it also gives them the knowledge to ask better questions and demand better solutions from their governments. There is, however, a very important skill and aim that needs to be taken into account by science communicators: people make decisions based on emotion rather than logic. This means knowledge alone is not enough to change mentalities. When we communicate science, we need to make the public care, make the message personal. Only then science communication starts having a real impact.

Do you think that your science communication skills will have an influence on your career, or your ability to gain an appointment at your institution of choice or to convince investors or grant juries?

As I am actually thinking about a career change to the field of science communications, these skills are a requirement. More generally speaking, I think all researchers should develop their science communication skills, not only to communicate effectively between disciplines but also with stakeholders that play an important role in research funding. Nowadays, most grant applications include a section where candidates need to explain how they are going to disseminate their results beyond the scientific community. If your work is being funded by taxpayers’ money or charities, it makes sense that you tell them what you are doing, why, what the results are, and how that affects their lives. Research results can also influence/inform policy-making. However, lawmakers are not scientists, so it is important that the message is not misinterpreted. In turn, legislation affects what kind of research should be prioritized and should or should not be funded. Sometimes grants are reviewed by experts in the
applicant's field, but sometimes they are reviewed by government workers or people from industry more interested in the business side of things, therefore the way the message is conveyed needs to be adjusted accordingly.

What would you wish for your future career? Do you have plans to go abroad, maybe to Germany or Europe?

Japan has been an amazing experience both personally and professionally. However, I will definitely go back home to Europe. Also, I am planning to transition to a career where I can use my science communications skills. I was looking for a job that is a good fit and where I feel that I am making a difference.

I’ve recently given a talk and conducted a workshop on scientific literacy through the arts at an international conference on intercultural dialogue through the arts: community development, education and policy. The event was connected to the intercultural festival through the arts and included two informal days aimed at the general public and two academically-oriented days with peer-reviewed presentations and activities (as well as the arts festival). This is a great way of communicating science and getting everyone involved. I was the only foreign element there, in the sense that I was the only scientist, but everyone seemed genuinely interested and enjoyed the talk and workshop. This is what I want to do in the future: make science more accessible and engaging for students and the general public.

After my current contract ends, I will be joining an EdTech startup called Labster as a scientific simulation director. They make virtual reality simulations for teaching science at University level. These simulations can be more engaging than traditional teaching methods and students get to learn and perform experiments in a virtual reality lab, where they can experiment with animals without actually causing them harm, work with dangerous chemicals or pathogens without getting injured or ill, and use very expensive and advanced equipment that some universities don’t even have access to. This fulfills three aims that are very important to me, which are engaging students with science to obtain better results, inspiring them to use science to solve real-life problems, and making science education sustainable and affordable for everyone. For this job, you need to know your science, but also be very good at communication and have great imagination to come up with amazing ideas for story lines for the simulations.

Ana, thank you very much for your time and good luck in your new job!
EURAXESS Japan Quarterly Newsletter

EURAXESS Japan Activities Update

Deadline soon! Call for abstracts: science communication contest Falling Walls Lab Tokyo 2018

Apply now and get invited to Tokyo to present your research!

The Falling Walls Lab Tokyo 2018 (FWLT 2018) will take place on 12 May in Tokyo. Based on the idea of "breaking down various walls" around the world, this event provides students, young researchers and professionals of all disciplines and nationalities (based in Japan) an opportunity to present their research projects or ideas in 3 minutes and in English, in front of a non-specialised audience.

Two winners will be sent to the global Finale of the Falling Walls Lab in Berlin in November!

Our online call for abstracts is open until 9 April; all details are available on our dedicated event webpage.

Info & submission: bit.do/FWLT2018-euraxess

EURAXESS Japan Tour @Tokushima U, 12 April

The second edition of the EURAXESS Japan Tour 2018 will take place at Tokushima University on 12 April. This edition will, for the first time in Shikoku area, present an overview of the opportunities for mobility of individual researchers at all career steps through the Marie Sklodowska-Curie Actions (MSCA) ITN (for PhDs) and IF (for postdocs and above) as well as the European Research Council (for excellent researchers) programmes; before providing a focus on the opportunities for larger and longer term cooperative research projects through the MSCA RISE programme and through the top-down, topic-oriented, Horizon 2020 cooperative research and innovation funding programme.

Venue & time: Tokushima U., 14:00-16:00 (individual consultations after 16:00)

Language: Japanese (materials in English)

Further information and registration: bit.do/EJTOUR18tokudai

Who can submit an abstract?

Bachelor and Master students (provided they are working on a research project on their own), PhD candidates, postdocs, young professionals and entrepreneurs from all nationalities and scientific disciplines are invited to apply.

What's in it for the applicants?

For the selected participants, in addition to being invited to the Tokyo event, they will be granted access to specific training materials on science communication.

First prize and second prize will be trips to Berlin for the Falling Walls Lab Finale and Conference on 8-9 November (where the winners of the Tokyo event will present in front of hundreds of executives, investors or policy-makers)

Who can submit an abstract?

Bachelor and Master students (provided they are working on a research project on their own), PhD candidates, postdocs, young professionals and entrepreneurs from all nationalities and scientific disciplines are invited to apply.

What's in it for the applicants?

For the selected participants, in addition to being invited to the Tokyo event, they will be granted access to specific training materials on science communication.

First prize and second prize will be trips to Berlin for the Falling Walls Lab Finale and Conference on 8-9 November (where the winners of the Tokyo event will present in front of hundreds of executives, investors or policy-makers)
Horizon 2020 seminar @Kobe U, 13 April

Horizon 2020 is the EU’s largest program to promote research and innovation, in which everyone from around the world can participate, including Japan. The program makes top class research in cooperation with research institutions and companies in Europe possible. In this workshop, a representative from the Delegation of the European Union to Japan will give an outline of the Horizon 2020 program, a representative of the EU-Japan Centre for Industrial Cooperation, which serves as the formal point of contact for Horizon 2020 in Japan, will explain how to participate in the program and how to apply. The representative for EURAXESS will explain about functions of EURAXESS and other European funding structures. A case study will be introduced by a local researcher who participated in a Horizon 2020 project.

Venue & time: Kobe U., 10:00-13:00 (individual consultations after 15:45)

Language: Japanese and English (materials in English)

Further information and registration: Kobe U

European Higher Education Fair, Meiji U, 19 May

The Delegation of the European Union (EU) to Japan, together with several other entities, will organise the 'European Higher Education Fair 2018' on 19-20 May in Tokyo and Osaka. The fair aims to showcase some of the most interesting higher education programmes Europe has to offer. At the event, which will host more than 80 booths, several thousands of visitors were able to speak directly with representatives from institutions in over 20 European countries.

EU programmes open to students and researchers, such as Erasmus+ and those under the Horizon 2020 framework, will also be promoted. Seminars on the career benefits of studying abroad, scholarship opportunities, and alumni panel discussions will be organised at both venues.

EURAXESS will be present with a booth and seminars at the Tokyo fair.

Further information: EHEF 2018